
A Systematic Analysis of Regularisation Terms for
Neural Link Prediction Models

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Regularisers are instrumental in improving the generalisation accuracy of neural link pre-2

diction models. In this paper, we systematically analyse several regularisation methods for3

factorisation-based neural link predictors and evaluate how they impact the downstream4

link prediction accuracy. We consider multiple methods for regularising neural link predic-5

tors, including norm-based regularisers, gradient penalties, auxiliary training objectives,6

and manifold regularisation. We conduct extensive experiments on three datasets, namely7

WN18RR, FB15k-237 and Yago3-10. In our analysis, we find both gradient penalty8

and auxiliary training objectives can improve the generalisation properties of neural link9

predictors when trained together with L2 regularisation, yielding up to a 4.6% increase10

in MRR, 4.9% in Hits@1, and 8.3% in Hits@10 when using ComplEx. The auxiliary11

training objectives are effective when the data is insufficient or the model is complex. On12

the other hand, we only observe marginal improvements when using the nuclear 3-norm.13

1 Introduction14

As the result of constructing large-scale knowledge graphs (KG) such as Freebase [1], DBpedia [2] and15

YAGO [3], more entities with few or zero relations were added to the KG. Those entities resulted in a16

highly incomplete structure of the KG. Therefore, the research on Knowledge Graph Completion (KGC)17

was proposed to explore the implicit relationships among entities or relations and construct a complete KG18

for large-scale real-world applications by recovering the missing facts.19

Among all the research directions of KGC, the neural link predictor, a kind of Knowledge Graph Embedding20

(KGE) Model, has become more and more popular recently. This method focuses on learning embeddings21

for entities and relations based on existing triples and then uses the learned embeddings to evaluate the22

plausibility of new facts through a scoring function.23

Regularisation is commonly required during the training of neural link predictors to improve the model24

generalisation. In this paper, inspired by the regularisers in latent space representation models [4], multi-task25

learning [5], and matrix factorisation [6], we consider 4 new regularisers for KGC tasks with the hope26

of improving the model generalisation, including norm-based regularisers, gradient penalty, multi-task27

learning, and manifold regularisation. We find both gradient penalty and auxiliary training objectives can28

improve the generalisation properties when using L2 regularisation, and training with auxiliary tasks is29

especially helpful when the model has high complexity and data is insufficient. Based on our experimental30

results, we then conclude nuclear norm and gradient penalty are the most effective regularisers.31

2 Background and Related Work32

A knowledge graph G is defined by a set of entities nodes E and a set of relations R. The data stored in the33

knowledge graph is formed as factual triples ⟨s, r, o⟩, where each triple represents a connection between34

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

subject s and object o with relation type r. It is noticeable that the subjects and the objects are from the35

same set of entities, so the knowledge graph lies in a 3-order space, with G ⊆ E ×R× E .36

Knowledge Graph Completion. The general Knowledge Graph Completion (KGC) tasks include comple-37

menting the missing entities, relations, or even attributes. In this paper, we are going to focus on a specific38

type of KGC problem called neural link prediction.39

Neural link prediction intends to predict the missing entries by mining the facts in the knowledge graph and40

learning the representation for each entity and relation. The completion task forms its dataset as follows.41

The training set consists of a series of triples that are known to hold true in a knowledge graph, denoted as42

S =
{
(s1, r1, o1) , . . . ,

(
s|S|, r|S|, o|S|

)}
⊆ G. While the queries in the validation and test sets come with43

the form ⟨s, r, ?⟩ or ⟨?, r, o⟩, the model is required to find out the index of the missing entities.44

We would like to answer the query ⟨s, r, ?⟩ (similarly to ⟨?, r, o⟩) by finding the object entity o∗ that has the45

highest conditional probability Pθ(o
∗ | s, r), where θ is the trainable parameters in the model. An intuitive46

way to solve this problem is by calculating Pθ(o
′ | s, r) for all o′ ∈ E , and finding the one with the highest47

probability, noted as o∗. The likelihood of Pθ(o | s, r) can be estimated by normalising a parametric score48

function ϕθ(s, r, o):49

Pθ(o | s, r) = exp(ϕθ(s, r, o))∑
o′ exp(ϕθ(s, r, o′))

(1)

Scoring function Neural link predictors can be characterised by their scoring function ϕθ. Formally, we will50

use es, eo and wr to denote the embedding of a subject s, object o and relation r, and in this paper we are51

particularly interested in the factorisation-based models. For instance, DistMult [7] defined the score function52

as ϕθ(s, r, o) =
∑

k e
k
sw

k
r e

k
o := ⟨es,wr, eo⟩, where ⟨·, ·, ·⟩ denotes the tensor inner product. Canonical53

Tensor (CP) Decomposition [8] uses two distinct representations for an entity depending on whether it is54

used as a subject or object, and uses the same tensor inner product to calculate the score function. ComplEx55

[9] extends DistMult to solve the problem of symmetry and anti-symmetry by introducing complex numbers56

to the embeddings, which has the score function ϕ (s, r, o) = Re(⟨es,wr, ēo⟩), where Re(x) is the real57

part of x. TuckER [10] introduces a core matrix to the model, and this core tensor works as an information58

compression for the original tensor. It has the score function ϕ (s, r, o) = Z ×1 es ×2 wr ×3 eo.59

Training objective. Neural link predictors could be trained by a large range of loss functions, e.g ranking60

losses, binary logistic regression or sampled multi-class log-loss. Motivated by the solid results in [11], we61

will follow the convention to use multi-class log loss during the training stage. The loss function can be62

interpreted as the negative summation of subject and object log-likelihood,63

L = −
∑

⟨s,r,o⟩∈S

[logPθ(s | r, o) + logPθ(o | s, r)] (2)

We further introduce loss term for each training triple ⟨s, r, o⟩ to simplify the expression, which is ℓs,r,o =64

− logPθ(s | r, o)− logPθ(o | s, r).65

Regularisers. Previous studies suggest that regularisation prevents the training process to trivially min-66

imise the loss L by increasing the norm of the embeddings [12]. Recent work also shows that regularisers67

have the potential to improve the generalisation of neural link predictors [5, 11]. The loss function with a68

regulariser can be written as:69

L =
∑

s,r,o∈S

ℓs,r,o + λR(es, eo,wr)

=
∑

s,r,o∈S

ℓs,r,o +
∑

z∈{es,eo,wr}

λR(z)

 (3)

2

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

For simplicity, we use z ∈ CK to denote the embedding vector instead of the conventional notation70

es,wr, eo. Proved in [11], it is possible to only regularise the embeddings in a batch to obtain a weighted71

regulariser. But this trick is only practical for factorisation-based models, so in this work, we will mainly72

focus on factorisation-based neural link prediction models.73

To the best of our knowledge, previous works mostly rely on L1 and L2 regularisers. For example, the74

regularisers used by [12] and [9] are simply R(z) = ∥z∥1 and R(z) = ∥z∥2. More recent work started to75

consider using tensor norm as a regulariser instead of simple embedding norms. [11] suggested that the76

nuclear norm can work as an approximation of the tensor rank and proposed to use the nuclear norm as77

a regulariser. While in the factorisation models that we consider, the nuclear 3-(N3) norm works exactly78

the same as the L3 norm of each embedding. Beyond that, designing auxiliary tasks for KGC models is79

also considered a useful regulariser. Among them, [5] adds relation prediction as a new training objective,80

DURA [13] constructs a dual distance-based KGC model for each tensor factorisation model and jointly81

trains them to get better embeddings. These regularisers have been proven to be beneficial and efficient for82

training factorisation-based neural link predictors.83

In this paper, we will consider multiple regularisation methods from different machine learning fields that84

have never been tested in KGC tasks, and make a systematic analysis of their impact on the neural link85

prediction models compared to existing regularisers.86

3 Regularisation terms87

In this paper, we will propose four novel regularisers, and investigate their impact on the neural link88

prediction models.89

3.1 Norm-based regularisation90

L1, L2 and N3 norms are the regularisers that are generally favoured by the community. Inspired by the91

elastic net[14], our first attempt is to combine different orders of norms and define a new regulariser:92

R(z) = λ1 ∥z∥1 + λ2 ∥z∥2 + λ3 ∥z∥3 (4)

3.2 Gradient Penalty93

Gradient penalty has been widely applied to latent space models, e.g. Generative Adversarial Neural94

Networks (GANs) [15] and Variational Auto-Encoders (VAEs) [16]. Neural link predictors are also latent95

space models with the encoder being embedding lookup functions and the decoder being score functions96

[17]. Thus, we are curious whether the gradient penalty regularisation could also work on the scheme97

of neural link predictors. Specifically, we consider applying gradient penalty to the decoder part (score98

function) since the encoder part is simply a lookup function and not differentiable.99

Let the embedding vectors z ∈ {es,wr, eo} (with size K) be the input of the score function y = f(z) =100

ϕθ(s, r, o) (output). A small perturbation applied to the embedding z can be expressed as z+ ϵ and we are101

interested in minimising the effect of such perturbation on the model output. According to Taylor expansion,102

the corresponding function output will be approximated as:103

f(z+ ϵ) = f(z) +

K∑
i=1

ϵi ·
∂f

∂zi
(z) +O

(
ϵ2
)
. (5)

If we neglect the second order infinitesimal O
(
ϵ2
)
, minimising the output drift due to input perturbations,104

namely f(z + ϵ) − f(z), is equivalent to minimising the term
∑K

i=1 ϵi ·
∂f
∂zi

(z). In other words, the105

impact of the input perturbation ϵ on the model output is governed by the so-called Jacobian function106

J(z) = (J1(z), . . .JK(z)), with the output function being f(z) = ϕθ(s, r, o), we get107

Ji(z) ≡
∂f

∂zi
(z) =

∂ϕθ(s, r, o)

∂zi
, i ∈ {1, . . . ,K}, (6)

3

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

e1

r1

r1

r5

(a) Considering the target node
e1 and assuming 5 relations types
exist, r1, . . . , r5, r1 is in the
range of e1 and r5 is in the do-
main of e1. The feature then is
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1].

e1

e2

e3
e4

r2
r1

r5

e5

e6
r1

r2r3

r3’

(b) Assuming 5 relations types ex-
ist, r1, . . . , r5 and considering the
inverse relation r′i, we sampled
2 length-3 paths from e1, p1 =
(e1, r1, e2, r2, e3, r5, e2) and p2 =
(e1, r1, e4, r2, e5, r

′
3, e6). The fea-

ture is [1, 1, 0, 0, 1, 0, 0, 1, 0, 0].

a1

e2: Target Node

r2 r1
r5

a2

a3

r5

r4

r3
r1 e3 e1

(c) e2 is the target node. If 3 an-
chor nodes a1, a2, a3 are selected,
and 2-nearest anchors are a1 and
a2, the path from a1, a2 to e2 are
p1 = (a1, r1, e3, r5, e2) and p2 =
(a2, r5, e1, r1, e2). The constructed
feature is [1, 1, 0, 1, 0, 0, 0, 1]

Figure 1: Examples of three feature construction methods

Thus, minimising ∥J(z)∥p would work as a regulariser to make the model robust to input noise. By108

introducing the L2 gradient penalty to our model, we can now form the new loss function as109

L =
∑

s,r,o∈S

ℓs,r,o +
∑

z∈{es,eo,wr}

λ∥J(z)∥2

 (7)

We calculate the Jacobian matrix w.r.t score function as in Equation (6) instead of multi-class output of the110

models to reduce the tensor size to be b×K. This way, the computational resources are saved and a similar111

effect is obtained. To better understand the mechanism, we derive the analytical form of Gradient Penalty112

on factorisation models in Appendix A.5 and make a comparison with norm-based methods.113

3.3 Multi-task Learning114

Graph representation learning algorithms [17], e.g. Node2Vec, Struc2Vec, use embedding to encode the115

graph structure. Inspired by this, we consider predicting the graph features to be helpful in the training of116

entity embeddings by both improving the generalisation and encoding structure information of the KG to117

the embeddings. In this part, we will manually construct graph features based on factual triples and their118

multi-hop relationships. And the model will be asked to predict features during training as auxiliary tasks,119

which can be viewed as a regulariser.120

Former studies [18, 19] have suggested several ways to design node representation features. Based on their121

work, we develop three types of feature representations, respectively called in-range and in-domain (IRID)122

feature representation, random paths representation, and NodePiece representation.123

IRID Feature Representation. In-range and in-domain (IRID) feature representation utilises the relation
types to construct the features. Considering that the relation types could be highly correlated to their subject
or object, we can aggregate all the relation types that are directly connected to a target node to construct a
feature for it. Specifically, given a triple ⟨s, r, o⟩, we say relation r is in the range of subject s and in the
domain of object o. Thus two clauses can be defined, namely in-range and in-domain:

in-range(e, r) =
{

1 ∀o, if ∃(e, r, o) ∈ S
0 otherwise

in-domain(e, r) =
{

1 ∀s, if ∃(s, r, e) ∈ S
0 otherwise

4

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

If we use both in-range and in-domain features for all relations to represent a node entity vi, we can easily124

get a binary vector, h⃗i ∈ R2|R|. An example of IRID representation can be found in Figure 1a.125

Random Paths Feature Representation. The idea of using Random Paths feature representations is126

inspired by the path sampling method in [20]. The algorithm works as follows: First, for each node entity, n127

random paths1 starting from this node are sampled, and each path can be expressed as a sequence of entities128

and relations, i.e. p = (e1, r1, e2, . . . eK−1, rK−1, eK), in which ei’s are the nodes this path walks through129

and ri’s are the relations that connect these nodes.130

This path sampling method aims to build a sub-graph around the target node and find out the entities and131

relations that are closely linked to it. In NodePiece representation we will consider the entities, but for132

now, the feature vector is constructed only by the types of relations a path travels along. The direction of133

the relation (forward and inverse) is considered in our work, which leads to a vector of size |E| × 2|R|.134

For simplicity, we still construct a binary feature, where 1 represents the case when a relation appears in135

the sampled path p, and 0 otherwise. An example is in Figure 1b and the selection of hyperparameters is136

discussed in Appendix A.1.137

NodePiece Feature Representation. Aside from the relation types, the entities that are relevant to the138

target node are also useful for constructing the node feature. However, since the number of entities in a139

knowledge graph is usually giant, it is computationally not feasible to construct a feature vector to identify140

all the entities. Thus, we refer to the idea in [19] and consider constructing the features based on a small141

subset of the graph entities, which are called anchor nodes.142

Specifically, given a knowledge graph G = (E ,R), the task is to use fixed-size of anchor nodes and all143

the relation types to form a vocabulary set and represent all the entities. For instance, assuming that we144

successfully select |A| nodes as anchors, each anchor node aj has the shortest path p directing to the target145

node vi, which records |A| paths. We keep the k nearest anchors by measuring the distance between the146

anchor nodes aj and vi. Then the index of these anchor nodes and the relation types along the paths could147

be used to represent the target nodes. An example can be found in Figure 1c.148

The anchor nodes can be selected either randomly or by importance measurement. For our purpose, centrality
and Personalised PageRank (PPR) [17] on nodes would be combined to determine the anchor nodes. Similar
to the IRID feature construction, we used a binary identity function to construct the feature. For each entity
node vi, the feature is decomposed into 2 parts, the anchor node representation part h⃗a, and the relation
representation part h⃗r. The first part could be expressed as,

h⃗a
i =

{
1 if aj is one of the k-nearest anchors
0 otherwise

If node aj is selected to be an anchor node and appear in the k-nearest anchors of node vi, we then find k
shortest paths between all selected aj’s and vi, which is pj = (e1, r1, e2, . . . eK−1, rK−1, eK). We again
record the relation that appears in the path to form a relation feature.

h⃗r
i =

{
1 if relation r appers in pj ,∀j
0 otherwise

The feature vectors h⃗a
i and h⃗r

i are concatenated and finally forming the h⃗i ∈ R|A|+|R|. The feature matrix149

then is H ∈ R|E|×(|A|+|R|). Further discussion of hyperparameter setting can be found in Appendix A.1150

The auxiliary task design. In this paper, we only consider constructing features for entities, which can be151

denoted as H = (⃗h1, . . . h⃗i, . . . , h⃗|E|)
T ∈ R|E|×F , where |E| is the number of entities and F is the size of152

the feature vectors. As all the features constructed are binary, the model design for the feature prediction153

tasks is very simple. We feed the entities embeddings to a dense layer g(·) with sigmoid activation to154

1n is a hyper-parameter to be tuned, in our experiment we consider a range of values for n ∈ [5, 10, 100, 1000].

5

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

reconstruct the features and use binary cross-entropy loss to train the model. With a new training loss L′ for155

the auxiliary training objective, the overall loss now becomes:156

L =
∑

s,r,o∈S
ℓs,r,o + λL′ (g (E) ,H) (8)

3.4 Manifold Regularisation157

Manifold regularisation, a method first used in matrix factorisation [6], utilises the geometric shape of a158

dataset to constrain the embeddings learned. For factorisation-based neural link predictors, the intuition159

is that if two data entities ei and ej are similar by some kind of measure, their embeddings ei and ej160

should also be close. If the distance between embeddings is measured by Euclidean norm, we can get the161

regularisation as R =
∑|E|

i,j=1 ∥ei − ej∥22Wij .162

The distance between the embeddings ei and ej is minimised according to the amplitude of a penalty weight163

Wij , which is determined by the similarity between entities ei and ej . By this definition, we formalise the164

manifold regularisation in neural link predictors, and the loss function now becomes:165

L =
∑

s,r,o∈S

ℓs,r,o + λ

|E|∑
i,j=1

∥ei − ej∥22Wij (9)

Similarity Matrix Construction. Manifold regularisation needs to access a distance matrix D to retrieve166

similar entities in the KG. To construct the D and calculate the weight Wij , we adopt the feature construction167

methods in Section 3.3, and use the feature vectors as a representation for entities. Specifically, the distance168

matrix is calculated by measuring the similarity between feature vectors, where Dij = (⃗hi − h⃗j)
2.169

Regularisation Weights Determination. The value of Wij could be calculated according to 2 methods,170

respectively the k-Nearest Neighbours (KNN) and the Gaussian kernel. The KNN weight construction only171

penalises the distance between a target node ei and its neighbour nodes, where Wij = 1 if ej is one of the172

k-nearest neighbourhoods of ei. The neighbours are found based on the distance matrix D. In the Gaussian173

kernel method, the weight Wij is calculated based on the distance between each entity in the feature matrix174

H. Wij = exp(−(⃗hi − h⃗j)
2/σ), with σ being a shape parameter.175

4 Empirical Study176

To verify the effectiveness of our proposed methods, we come up with the following research questions177

(RQs) to advise our experiments:178

RQ1: How do the extra regularisers impact the KGC model performance across different datasets?179

RQ2: How are the proposed regularisers compared with existing regularisers?180

RQ3: Where does the model performance change come from? Will the new tasks bring extra information181

to the model? or does it simply improve the model generalisation?182

To answer RQ1, 2, extensive experiments on various datasets and models are conducted. The settings are:183

Datasets: Three benchmark datasets, FB15k-237 [1], WN18RR [21], and Yago3-10 [22] are selected in the184

paper. Experiments on smaller datasets like Kinship, Nations and UMLS are discussed in Appendix A.3.185

Metrics: We use Hits@k, k ∈ {1, 10} and filtered Mean Reciprocal Rank (MRR) as the evaluation metrics.186

Benchmark regularisers: To compare our regularisers with other existing methods, we implemented187

norm-based regularisers[11], Relation Prediction[5] and DURA[13] as comparative methods.188

Models: Experiments are conducted with models based on tensor factorisation, including CP, DistMult and189

ComplEx (though DURA does not support DistMult). We used the nuclear N3 and the L2 norm [11] as190

6

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

Dataset Regularisers CP DistMult ComplEx

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

FB
15

k-
23

7

N3 34.83 25.77 52.88 35.84 26.53 54.78 36.67 27.28 55.78
L1+L2+N3 34.85 25.78 52.97 36.06 26.79 54.83 36.81 27.46 55.90

RP+N3 35.32 26.30 53.27 36.48 27.09 55.54 37.17 27.70 56.17
GP+N3 35.01 26.05 52.94 36.09 26.81 54.92 37.02 27.76 55.90

IRID+N3 35.00 25.97 53.03 36.14 26.86 54.91 36.79 27.36 55.80
Path+N3 35.01 26.03 53.01 36.00 26.71 54.90 36.75 27.27 55.74

NodePiece+N3 35.11 26.04 53.18 36.12 26.88 54.91 36.84 27.51 55.83
Manifold+N3 34.86 25.79 52.87 36.08 26.70 54.81 36.16 26.76 55.27
DURA+N3 35.05 26.11 53.03 / / / 36.39 27.01 55.27

W
N

18
R

R

N3 11.40 7.43 19.25 45.07 41.02 53.11 48.60 44.14 57.48
L1+L2+N3 11.58 7.71 19.51 45.08 40.94 53.44 48.70 44.54 56.77

RP+N3 12.04 7.83 19.77 45.32 41.33 53.70 48.91 44.99 56.82
GP+N3 11.69 7.58 20.33 45.27 41.23 53.60 48.35 44.13 56.78

IRID+N3 11.89 7.84 20.35 45.22 41.48 53.20 48.71 44.73 57.08
Path+N3 11.52 7.53 19.82 45.19 41.18 53.53 48.60 44.50 57.07

NodePiece+N3 12.12 7.83 21.03 45.20 40.84 53.74 48.62 44.40 56.77
Manifold+N3 12.19 8.59 19.00 45.32 41.30 53.70 38.10 35.12 43.34
DURA+N3 10.66 7.48 17.89 / / / 48.61 44.72 56.72

Y
ag

o3
-1

0

N3 56.17 49.45 68.50 57.02 50.27 70.04 58.12 50.79 70.65
L1+L2+N3 56.33 49.63 69.03 57.27 50.30 70.40 58.16 50.97 71.45

RP+N3 56.16 49.68 67.89 57.41 50.26 70.44 58.37 51.28 71.43
GP+N3 56.56 49.75 68.90 57.36 50.40 70.04 58.50 51.39 71.69

IRID+N3 56.61 49.82 68.92 57.38 50.23 70.56 58.21 51.30 71.03
Path+N3 56.60 50.07 68.82 57.38 50.27 70.56 58.13 51.12 71.00

NodePiece+N3 56.56 49.86 68.92 57.34 50.33 70.44 58.62 51.61 71.53
Manifold+N3 / / / / / /
DURA+N3 55.44 48.36 68.16 / / / 58.03 50.65 71.47

∗ GP - Gradient Penalty; IRID - In-range and in-domain feature; Path - Random Paths features; Embedding size = 2000

Table 1: Experiments results when the regularisers are applied together with N3 norm

a regulariser to prevent the training process to trivially minimise the loss L by increasing the norm of the191

embeddings [12]. We also conduct experiments when the regularisers are applied in a standalone mode, and192

the results can be found in Appendix A.2. The models are trained with standard triples without reciprocals.193

About RQ3, we are especially interested in providing an explanation for the improvement brought by194

auxiliary tasks, as the mechanism of gradient penalty and manifold regularisation is theoretically proved in195

the previous works[6, 15]. Thus, we designed two follow-up experiments, specifically called embedding196

size analysis and data efficiency analysis to solve RQ3. Embedding size analysis helps us to understand the197

impact of auxiliary tasks on models with different complexity. And data efficiency analysis trains models198

with a different number of data points to test the impact of extra information.199

4.1 The impact of regularisers200

Except for the norm-based regularisers, we compare the performance of training with and without the201

regularisers to answer how do the extra regularisers impact the KGC models. The extra regularisers are202

trained respectively with N3 or L2 norm. The hyperparameter configuration is reported in Appendix A.1203

General Observations. Our experiments suggest that all regularisers can only bring marginal improve-204

ments when combined with the nuclear norm. This is observed both in our proposed regularisers and in the205

7

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

Dataset Regularisers CP DistMult ComplEx

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

FB15
k-2

37
L2 33.60 25.09 50.37 34.71 25.80 52.55 34.95 25.97 53.03

RP+L2 33.76 52.32 50.70 35.05 26.20 52.75 35.71 26.82 53.76
GP+L2 34.44 25.53 52.11 35.78 26.54 54.56 36.49 27.23 55.13

IRID+L2 33.98 25.29 51.27 35.58 26.61 53.66 36.01 26.95 54.41
NodePiece+L2 34.40 25.63 51.57 35.29 26.37 53.37 36.11 27.14 54.18

DURA+L2 32.74 24.15 49.71 / / / 34.37 26.50 52.60

W
N18

RR
L2 8.39 6.06 12.98 44.32 41.30 50.29 45.49 42.53 51.08

RP+L2 10.06 7.61 15.47 44.29 41.24 50.34 45.99 43.08 51.01
GP+L2 10.10 7.31 15.00 44.34 41.35 50.77 47.27 43.34 55.34

IRID+L2 10.61 8.04 15.98 44.62 41.55 50.14 46.13 42.75 52.71
NodePiece+L2 11.27 7.70 18.00 44.46 41.50 50.77 45.99 42.66 52.44

DURA+L2 10.26 7.50 15.54 / / / 46.14 42.86 52.26

Yag
o3

-10
L2 55.64 49.14 67.43 56.83 49.74 69.94 57.85 50.80 70.79

RP+L2 56.16 49.69 67.89 56.86 49.93 70.20 58.09 51.24 70.71
GP+L2 56.24 49.64 68.17 57.17 50.23 70.17 58.20 51.28 71.15

IRID+L2 56.10 49.65 68.13 57.00 50.10 70.12 58.21 51.30 71.03
NodePiece+L2 55.59 49.37 68.06 56.88 49.94 69.78 58.13 51.12 71.00

DURA+L2 55.53 49.15 67.04 / / / 58.19 50.99 70.99
∗ GP - Gradient Penalty; IRID - In-range and in-domain feature; Embedding size = 2000

Table 2: Experiments results when the regularisers are applied together with L2 norm

regularisers that are claimed helpful in previous research, e.g. DURA and relation prediction. However,206

when the regularisers are trained in the standalone mode or with L2 norms, a significant improvement can be207

observed in all the regularisers except the manifold regularisation and auxiliary training objective designed208

with random paths representation. The conclusion is supported not only by the accuracy test in Tables 1, 2209

and 5 but also by the regulariser weights reported in Table 3.210

Experiments with N3 norm. From our experiments, the standard deviation is around 0.3. Thus, given the211

small difference between model performance with different regularisers, we can only claim that most of the212

regularisers fail to boost the model performance when the nuclear norm is applied. The hyperparameters213

configuration in Table 3 can also help us to make the same conclusion. Usually, the smaller the regulariser214

weights are, the less influential the regularisers are to the model. In Table 3, regularisers, weights with the215

nuclear norm is much smaller than the others, and in some extreme scenario, the weights decay to 0, which216

means auxiliary regularisers do not even bring an improvement.217

Experiments with L2 norm. However, the impact of regularisers becomes significant in the L2-norm218

experiments. The experiment results suggest that gradient penalty can improve comparative generalisation219

as the N3 norm. While a consistent improvement is found in all the factorisation-based models, ComplEx220

benefits most from gradient penalty, with increases up to 4.6% in MRR, 4.9% in Hits@1, and 8.3% in221

Hits@10. Also, the models gain improvements from the auxiliary training objectives with IRID features and222

NodePiece feature, even though the values are not as significant as the gradient penalty.223

4.2 Embedding Size analysis224

The tensor factorisation-based neural link predictors are known to suffer from the problem of scalability when225

using larger embedding sizes [5] and the choice of embedding sizes would largely impact the generalisation226

of these models. Thus, in order to test the performance of our regularisers on models with different227

complexity, we consider the embedding sizes K ∈ {100, 200, 500, 1000, 2000} and compared the MRR228

8

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Rank

28

29

30

31

32

33

34

35

36

M
R

R

Without Feature Prediction
With Node-Piece Feature
With IRID Feature

(a) Embedding size analysis for IRID and NodePiece
features, with k = 2000 and L2 = 0.001

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Data Percentage

0.2

0.25

0.3

0.35

0.4

0.45

H
its

@
10

Baseline

Full feature

partial feature

(b) Data efficiency analysis for NodePiece feature evalu-
ated on FB15k-237, with k = 2000 and N3 = 0.1

among the scenarios with/without auxiliary tasks. The results on FB15k-237 are illustrated in Figure 2a, and229

the numerical results can be found in Appendix A.4.230

Interestingly, we clearly find that auxiliary tasks grant a better performance on the more complex models231

with larger embedding sizes. This result suggests that multi-task learning methods truly improve the232

generalisation, and help the models with higher complexity to reach their performance ceiling.233

4.3 Data Efficiency Analysis234

We then manage to test the impact of the auxiliary tasks on neural link predictors when data points are235

insufficient. We test in the scenarios when 5%, 10%, 20% and 50% data points from the original dataset are236

accessed for training by uniformly random sampling. To test whether the auxiliary training objective can237

encode extra information into the model, we construct the features respectively with the subset or with the238

whole dataset and train the model, as the feature vector constructed from the whole dataset contains the239

information that the training data points do not have.240

Figure 2b gives an example of when NodePiece features are used. For all the experiments with insufficient241

data, training with auxiliary tasks shows a significant improvement in the model performance, and using242

the feature constructed from the whole dataset brings even better improvement. The Hits@10 increases243

are respectively 5.8%, 4.8%, 3.9% and 2.4% for the experiments on the subset of 5%, 10%, 20% and 50%244

data points. It is noted that the generalisation improvement is more remarkable when fewer data points245

are accessed. This result proves that the auxiliary task could bring the models out of the predicament of246

overfitting. In the meantime, the experiments also suggest that the feature vector contains extra information247

extracted from the knowledge triples, and the prediction task would potentially encode the information248

into the embeddings while training. This is valuable as we can utilise this feature as a method to avoid249

over-complicated training processes, or apply it in low-resource training tasks.250

5 Conclusion251

Our work suggests that the nuclear 3-norm is a very effective regulariser, and the other considered regularisers252

did not significantly improve the accuracy of the factorisation-based models when N3 norm is applied.253

However, we find that gradient penalty regularisation could bring a similar improvement to the models as254

the nuclear norm when trained together with L2 regularisation. Multi-task learning regularisers would also255

benefit the training of neural link predictors, especially when the data points are insufficient and the model256

has high complexity. Our future work will attempt to give an explanation of the mechanism of N3 norm and257

further investigate how to utilise the auxiliary training objectives in low-resource training tasks.258

9

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

References259

[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabo-260

ratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM261

SIGMOD international conference on Management of data, pages 1247–1250, 2008. 1, 6262

[2] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak,263

and Sebastian Hellmann. Dbpedia - A crystallization point for the web of data. J. Web Semant., 7(3):264

154–165, 2009. 1265

[3] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge. In266

Proceedings of the 16th international conference on World Wide Web, pages 697–706, 2007. 1267

[4] Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust learning with jacobian regularization. CoRR,268

abs/1908.02729, 2019. URL http://arxiv.org/abs/1908.02729. 1269

[5] Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp. Relation prediction as an270

auxiliary training objective for improving multi-relational graph representations. In 3rd Conference271

on Automated Knowledge Base Construction, 2021. URL https://openreview.net/forum?id=272

Qa3uS3H7-Le. 1, 2, 3, 6, 8, 13273

[6] Deng Cai, Xiaofei He, Jiawei Han, and Thomas S Huang. Graph regularized nonnegative matrix274

factorization for data representation. IEEE transactions on pattern analysis and machine intelligence,275

33(8):1548–1560, 2010. 1, 6, 7, 13276

[7] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations277

for learning and inference in knowledge bases. In ICLR (Poster), 2015. 2278

[8] Frank L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of279

Mathematics and Physics, 6(1-4):164–189, 1927. doi: https://doi.org/10.1002/sapm192761164. URL280

https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164. 2281

[9] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex282

embeddings for simple link prediction. In ICML, volume 48 of JMLR Workshop and Conference283

Proceedings, pages 2071–2080. JMLR.org, 2016. 2, 3284

[10] Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Tucker: Tensor factorization for knowl-285

edge graph completion. In EMNLP/IJCNLP (1), pages 5184–5193. Association for Computational286

Linguistics, 2019. 2287

[11] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for288

knowledge base completion. In ICML, volume 80 of Proceedings of Machine Learning Research,289

pages 2869–2878. PMLR, 2018. 2, 3, 6290

[12] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.291

Translating embeddings for modeling multi-relational data. Advances in neural information processing292

systems, 26, 2013. 2, 3, 7293

[13] Zhanqiu Zhang, Jianyu Cai, and Jie Wang. Duality-induced regularizer for tensor factorization based294

knowledge graph completion. In NeurIPS, 2020. 3, 6295

[14] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal296

of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005. doi:297

https://doi.org/10.1111/j.1467-9868.2005.00503.x. URL https://rss.onlinelibrary.wiley.298

com/doi/abs/10.1111/j.1467-9868.2005.00503.x. 3299

[15] Hoang Thanh-Tung, Truyen Tran, and Svetha Venkatesh. Improving generalization and stability of300

generative adversarial networks. In 7th International Conference on Learning Representations, ICLR301

2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.302

net/forum?id=ByxPYjC5KQ. 3, 7303

[16] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-304

encoders: Explicit invariance during feature extraction. In ICML, pages 833–840. Omnipress, 2011.305

3306

10

http://arxiv.org/abs/1908.02729
https://openreview.net/forum?id=Qa3uS3H7-Le
https://openreview.net/forum?id=Qa3uS3H7-Le
https://openreview.net/forum?id=Qa3uS3H7-Le
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x
https://openreview.net/forum?id=ByxPYjC5KQ
https://openreview.net/forum?id=ByxPYjC5KQ
https://openreview.net/forum?id=ByxPYjC5KQ

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

[17] William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and307

Machine Learning, 14(3):1–159, 2020. 3, 4, 5308

[18] Agnieszka Dobrowolska, Antonio Vergari, and Pasquale Minervini. Neural concept formation in309

knowledge graphs. In 3rd Conference on Automated Knowledge Base Construction, 2021. URL310

https://openreview.net/forum?id=V61-62OS4mZ. 4311

[19] Mikhail Galkin, Jiapeng Wu, Etienne Denis, and William L. Hamilton. Nodepiece: Compositional and312

parameter-efficient representations of large knowledge graphs. CoRR, abs/2106.12144, 2021. 4, 5, 12313

[20] Rajarshi Das, Ameya Godbole, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. A314

simple approach to case-based reasoning in knowledge bases. In 2rd Conference on Automated315

Knowledge Base Construction, 2020. 5316

[21] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowl-317

edge graph embeddings. In AAAI, pages 1811–1818. AAAI Press, 2018. 6318

[22] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3: A knowledge base from319

multilingual wikipedias. In CIDR. www.cidrdb.org, 2015. 6320

11

https://openreview.net/forum?id=V61-62OS4mZ

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

Dataset Regularisers CP DistMult ComplEx

W/O F2 N3 W/O F2 N3 W/O F2 N3

FB15
k-2

37
RP 0.01 0.1 0.5 0.5 0.1 0.5 0.5 0.5 0.5
GP 103 102 10 103 103 10 103 103 102

IRID 10 10 0.1 10 10 10 50 10 10
PATH / / 0.01 / / 0.1 / / 0.01

NodePiece 10 10 1 10 10 1 5 10 0.1
DURA 0.005 0.01 0 / / / 0 0.005 0

W
N18

RR
RP 0.05 0 0.1 0 0.05 0.05 0.1 0.005 0.05
GP 103 103 103 102 102 0.01 103 103 500

IRID 10 1 0.1 0.1 1 1 0 1 1
Path / / 0.01 / / 0.01 / / 0

NodePiece 102 10 10 1 1 0.1 10 10 0.1
DURA 0.01 0.05 0 / / / 0.01 0.01 0

Yag
o3

-10
RP 1 1 0 0.5 0.5 0 0.5 1 0.1
GP 10 102 10 10 102 102 10 10 1

IRID 10 10 1 0.1 10 10 10 1 10
Path 10 10 0 1 1 0.01 1 1 0

NodePiece 1 10 1 1 1 1 10 0.1 1
DURA 0 0.01 0 / / / 0.005 0.005 /

∗ GP - Gradient Penalty; IRID - In-range and in-domain feature;

Table 3: Best hyperparameter configuration: the regulariser weights

A Appendix321

A.1 Best hyper-parameter configuration322

To find the best hyperparameter combinations, grid search was done with N3 ∈323

{0, 10−3, 10−2, 0.05, 0.1, 0.5}, L2 ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1}, regulariser weight ∈324

{0, 0.01, 0.1, 0.5, 1, 10, 50, 100, 1000}. The regulariser weights that we found most benefit the325

model are reported in Table 3. For the regularisers that we do not find having a positive impact on the model,326

"0" is put in the cell.327

Besides the common regularisers weight λ, for Multi-task learning regularisers and manifold regularisation,328

we have the following hyperparameter setting.329

Hyperparameter for Random Path feature prediction. The number of random paths sampled n is a330

hyper-parameter to be tuned, in our experiment we test a range of n ∈ [5, 10, 50, 100, 1000], and find the331

performance becomes stable with n ≥ 50. In our empirical study, the random paths feature representation332

does not bring significant improvement to the KGC models. This is reflected by either the marginal333

performance improvement brought by this regulariser described in Tables 1, 2 and 5, or the small regulariser334

weights after grid search in Table 3.335

Hyperparameter for NodePiece feature prediction. The hyperparameter setting for NodePiece requires336

a giant grid search. To simplify the process, we continue to use the convention in [19] by sampling 40%337

of the anchor nodes by centrality, 50% by Personalised PageRank and 10% by random sampling. In338

the experiment, we test a range of the number of anchors |A| ∈ {200, 500, 1000} and the number of339

neighbourhoods k ∈ {5, 20, 50, 100}.Table 4 demonstrates the hyper-parameter settings for NodePiece340

feature prediction. We do not find a clear pattern about how to choose the number of anchor nodes and341

neighbours.342

12

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

Dataset Regularisers CP DistMult ComplEx

W/O F2 N3 W/O F2 N3 W/O F2 N3

FB15k-237 regulariser weight λ 10 10 1 10 10 1 5 10 0.1
#Anchor nodes 1k 1k 500 500 200 500 500 500 500
#Neighbours 100 100 50 10 10 10 50 100 5

WN18RR regulariser weight λ 100 10 10 1 1 0.1 10 10 0.1
#Anchor nodes 1k 200 500 500 200 200 200 500 1000
#Neighbours 100 50 10 50 10 50 10 50 10

Yago3-10 regulariser weight λ 1 10 1 1 1 1 10 0.1 1
#Anchor nodes 1k 500 500 500 500 500 200 500 200
#Neighbours 100 50 100 50 100 100 50 100 100

∗ GP - Gradient Penalty; IRID - In-range and in-domain feature;

Table 4: Best hyperparameter configuration: the NodePiece regularisers

Hyperparameter for Manifold regularisation. Hyperparameter selection for weight construction based343

on the Gaussian and k-nearest neighbours (KNN) methods are different. For KNN, the number of neighbours344

k needs to be selected manually, and we set the grid to be [5, 10, 20] according to the experiments of manifold345

regularization for Matrix Factorization[6]. For the Gaussian kernel, the grid of precision parameter σ is346

determined to be [1, 3, 5, 10] according to a preliminary calculation. The construction of the feature vector347

for similarity measure is similar to the IRID and NodePiece features so we do not further discuss it here. We348

omit the experiment of Manifold regularisation on Yago3-10 since it causes out-of-memory issues.349

Observations from the hyperparameter configuration. Regarding the performance of norm-based350

regularisers (L1+L2+N3), we find nuclear norm dominates the performance in the experiments of norm-351

based regularisers. The best performance is observed when the Nuclear norm is applied solely and l1, l2352

norms can only bring a small change. From the experiment results, gradient penalty can help F2, or without353

regularisers, but when combined with n3, it does not work quite well. The hyperparameter configuration354

is consistent with the model performance. It is obvious that when all the regularisers are combined with355

N3, the regulariser weights decay significantly. That somehow suggests those regularisers do not have a356

dominant impact when interacting with N3 regularisers.357

A.2 Standalone-mode Regularisation Experiment results358

Table 5 illustrates the experiment results when the regularisers are applied in a standalone mode. From the359

results, some regularisers that are claimed helpful in previous literature, e.g. relation prediction and DURA360

regularisers do not bring a comparative boost to our proposed methods, and this impact is related to the361

datasets. Specifically, the most useful regulariser is the gradient penalty, which consistently improves the362

model performance. And auxiliary training objective benefits FB15k-237 the most. While in other datasets363

there is no significant improvement found. We suspect that the auxiliary training objective would also be364

influenced by the number of relation types. As suggested in [5], WN18RR and Yago3-10 have much smaller365

size of relation types than FB15k-237, and our training objectives are all constructed by relation types. So366

predicting the feature vectors in those datasets might be not be a complicated task, thus cannot boost the367

model performance a lot.368

Even though the results from standalone-mode regularisers somehow suggest the impact of regularisers, we369

cannot give a conclusion just based on these. The KGC models without a regulariser penalising the parameter370

norms might converge to a sub-optimal scenario since the previous study suggests that the training process371

can trivially minimise the loss L by increasing the norm of the embeddings. Thus, further experiments with372

norm-based regularisers are required, as illustrated in the main body.373

13

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

Dataset Regularisers CP DistMult ComplEx

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

FB15
k-2

37
W/O Reg 33.44 24.93 50.47 34.78 25.86 52.62 34.68 25.88 52.95

RP 33.68 25.16 50.84 35.05 26.20 52.75 35.71 26.82 53.75
GP 34.44 25.53 52.10 35.77 26.54 54.55 36.34 27.22 54.67

IRID 33.98 25.22 51.42 35.58 26.61 53.65 35.50 26.36 53.99
NodePiece 34.40 25.63 51.60 35.28 26.40 53.37 35.38 26.30 53.77

DURA 32.61 24.04 49.59 / / / 34.52 25.45 52.61

W
N18

RR
W/O Reg 8.56 6.28 12.98 44.28 41.62 49.80 45.73 43.01 51.22

RP 9.16 6.57 13.35 44.22 41.33 49.81 45.51 42.65 51.00
GP 10.10 7.43 14.99 44.43 41.34 50.18 46.84 43.15 54.15

IRID 10.31 7.67 14.91 44.48 41.63 50.14 45.99 42.74 51.83
NodePiece 11.56 8.12 18.67 44.46 41.56 50.77 45.99 42.91 52.43

DURA 10.16 7.43 15.36 / / / 45.86 42.77 52.37

Yag
o3

-10
W/O Reg 55.31 48.79 67.24 56.58 49.51 69.64 57.99 50.93 70.87

RP 55.93 49.34 67.85 56.74 49.48 70.20 57.71 50.68 70.61
GP 55.54 49.01 67.42 56.83 49.66 69.82 58.20 51.28 71.15

IRID 55.89 49.55 67.74 56.84 49.88 69.87 58.17 51.15 70.88
NodePiece 55.50 48.90 67.42 56.84 49.83 69.76 57.95 51.15 70.71

DURA 54.76 48.23 67.04 / / / 57.99 50.93 71.02
∗ GP - Gradient Penalty; IRID - In-range and in-domain feature; Embedding size = 1000 for yago3-10 and 2000 for the

others

Table 5: Experiments results when the regularisers are applied in the standalone mode

A.3 The Experiment Results with Smaller Datasets374

We did a few preliminary experiments on smaller datasets like Kinship, UMLS and Nations, and the375

experiments can be found in Table 6 and Table 7.376

With the experiment results with the nuclear-3 norm, it is clear that the auxiliary training tasks (relation377

predictions, NodePiece feature prediction) can bring significant improvement to the KGC models. However,378

the impact of regularisers depends on the models and datasets. Specifically, relation prediction boosts379

experiments on Kinship most, and experiments on Nations benefit most from the NodePiece feature.380

However, the improvements are not always consistent - on the UMLS dataset, the regularisers do not have a381

good performance most of the time.382

When the L2 norm is used, it can be shown that the gradient penalty can consistently benefit the models in383

Kinship and UMLS. And the model performance on Nations is still boosted by NodePiece features.384

Even though the performance on small datasets can clearly show the power of new regularisers, they are385

rather unstable and heavily relied on hyper-parameter tuning. Thus, experiments on larger datasets are386

further required.387

A.4 The numerical results for embedding sizes analysis388

In Table 8 we illustrated the experiment results with/without auxiliary tasks among models with different389

embedding sizes as supplementary material to the visualisation figures Figure 2a.390

From the results, the improvement brought by regularisers is most clear when larger embedding sizes are391

used. When model complexity is low, sometimes the models even do not benefit from the auxiliary tasks.392

14

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

A.5 Derivation of the Analytical form of Gradient Penalty393

The experiment results suggest that gradient penalty can bring an improvement to the model performance,394

but why does it work terribly when combined with the nuclear norm? With this question, we manage to find395

the explicit form of gradient penalty on CP, DistMult and ComplEx models. Given the score function of the396

DistMult in Section 3.2 (the derivation for CP and ComplEx works similarly),397

ϕ(s, r, o) = Xs,r,o =
∑
k

eksw
k
re

k
o := ⟨es,wr, eo⟩

Since that eks ,wk
r and eko are all scalars, we can take derivative of ϕ with respective of eks398

∂ϕ

∂eks
= wk

r × eko

So in the vector form, the derivative is399

∂ϕ

∂es
= wr ⊙ eo

Where ⊙ is the element-wise product. And the regularizer can be formed as400

R(X) = ∥J(es)∥2 + ∥J(wr)∥2 + ∥J(eo)∥2
= ∥wr ⊙ eo∥2 + ∥wr ⊙ es∥2 + ∥es ⊙ eo∥2

This expression works similarly to the l2 norm but with a minor difference. Specifically, the l2 norm only401

penalizes the embedding norm, which can be written as ∥es∥. But for gradient penalty, it penalises the402

product of embedding es ⊙wr. Overall, they all penalise the amplitude of embeddings.403

In the calculation, we show that the gradient penalty works similarly to the l2 norm. Because the l2 norm404

and the nuclear norm actually work on the same thing - penalising the norm amplitude, it is not surprising405

that we cannot find a good performance when they interact with each other.406

We finally conclude that gradient penalty could significantly improve the generalisation power of the407

TF-based neural link predictors, especially when applied to the model individually. It would increase the408

model’s robustness against input perturbations, and apply a constraint to the norm at the same time.409

15

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

Dataset Regularisers CP DistMult ComplEx

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Kinship

N3 82.78 73.22 97.65 51.77 36.03 86.21 86.43 78.77 98.23
RP+N3 82.90 74.39 97.23 56.49 41.99 88.99 88.54 82.26 97.94
GP+N3 83.01 74.20 97.42 52.23 36.87 86.64 87.54 80.49 98.55

IRID+N3 82.64 73.22 97.66 53.70 38.71 87.73 86.35 78.77 97.65
PATH+N3 82.37 72.94 97.83 55.82 41.29 89.01 86.35 78.77 97.65

NodePiece+N3 83.26 74.15 98.03 52.95 37.96 87.40 85.89 78.02 98.46

UMLS

N3 89.33 81.36 98.38 74.59 64.98 91.60 96.08 93.41 99.84
RP+N3 90.16 83.35 97.85 78.38 70.71 90.64 96.44 94.32 99.53
GP+N3 89.51 81.75 98.46 74.74 64.97 91.45 96.74 94.55 99.70

IRID+N3 90.00 82.20 99.07 77.22 69.55 91.02 95.89 92.96 99.69
NodePiece+N3 90.42 83.81 99.00 77.52 69.63 91.56 95.97 93.42 99.70

Nations

N3 73.15 57.79 99.75 74.84 62.43 99.50 79.24 65.07 99.75
RP+N3 75.99 61.81 99.74 80.15 69.60 99.74 80.80 69.60 100.0
GP+N3 73.92 59.55 100.0 76.20 64.67 100.0 76.64 63.18 99.75

IRID+N3 73.53 58.04 99.75 77.85 67.33 99.49 78.40 65.17 99.75
NodePiece+N3 76.52 63.07 100.0 81.26 72.61 99.50 82.48 72.89 99.75

∗ GP - Gradient Penalty; IRID - In-range and in-domain feature; Embedding size = 200
Table 6: Experiments results on small datasets with N3 norm

Dataset Regularisers CP DistMult ComplEx

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Kinship

L2 77.59 66.25 96.68 48.31 33.47 84.46 8363 75.14 97.09
RP+L2 80.50 71.30 96.58 48.00 33.71 83.33 86.77 80.06 97.56
GP+L2 83.92 75.23 97.42 48.55 34.03 84.08 88.17 81.93 97.89

IRID+L2 77.74 66.39 96.72 48.50 34.32 83.05 82.49 73.08 97.47
NodePiece+L2 79.09 68.77 96.58 48.55 34.22 83.85 83.77 74.72 97.89

UMLS

L2 89.94 83.51 89.39 72.32 65.03 87.96 95.61 93.02 99.15
RP+L2 90.16 83.82 97.85 71.97 64.19 87.42 95.95 93.71 99.15
GP+L2 89.92 82.75 98.15 72.94 65.18 88.88 96.16 94.01 99.38

IRID+L2 91.07 85.11 98.54 72.26 64.26 88.65 94.61 91.33 99.30
NodePiece+L2 90.59 84.43 98.08 73.54 66.18 88.88 95.37 92.06 99.70

Nations

L2 75.42 60.30 100.0 79.36 68.59 100.0 80.04 67.59 99.49
RP+L2 74.96 61.31 99.50 80.15 69.60 99.74 80.80 69.60 100.0
GP+L2 76.01 61.56 9949 79.46 69.34 99.49 81.59 70.60 100.0

IRID+L2 75.03 59.55 99.75 79.15 68.59 99.49 82.48 72.36 99.75
NodePiece+L2 77.28 64.32 100.0 81.32 71.10 100.0 83.48 74.12 99.75

∗ GP - Gradient Penalty; IRID - In-range and in-domain feature; Embedding size = 2000

Table 7: Experiments results on small datasets with L2 norm

16

A Systematic Analysis of Regularisation Terms for Neural Link Prediction Models

Table 8: The detailed results of embedding size analysis for feature prediction

Model Baseline∗ With Feature Prediction

MRR H@1 H@3 H@10 MRR H@1 H@3 H@ 10

IR
ID

100 28.90 20.96 31.40 45.01 28.56 20.70 30.91 44.43

200 31.57 23.10 34.26 48.55 31.80 23.41 34.63 48.79
500 33.68 24.72 36.95 51.29 34.27 25.33 37.73 52.26

1000 34.58 25.51 37.86 52.50 35.11 25.99 38.69 53.33
2000 34.79 25.74 38.04 52.91 35.50 26.36 38.91 53.99

N
P

100 - - - - 28.75 20.75 31.28 45.08
200 - - - - 31.57 23.14 34.48 48.57

500 - - - - 34.05 25.15 37.50 51.94

1000 - - - - 34.94 26.00 38.33 52.89
2000 - - - - 35.37 26.30 38.96 53.77

* The baselines for IRID and NodePiece representation are the same, which we leave ’-’ here.

17

	1 Introduction
	2 Background and Related Work
	3 Regularisation terms
	3.1 Norm-based regularisation
	3.2 Gradient Penalty
	3.3 Multi-task Learning
	3.4 Manifold Regularisation

	4 Empirical Study
	4.1 The impact of regularisers
	4.2 Embedding Size analysis
	4.3 Data Efficiency Analysis

	5 Conclusion
	A Appendix
	A.1 Best hyper-parameter configuration
	A.2 Standalone-mode Regularisation Experiment results
	A.3 The Experiment Results with Smaller Datasets
	A.4 The numerical results for embedding sizes analysis
	A.5 Derivation of the Analytical form of Gradient Penalty

